Model Theory

Sheet 1

Deadline: 23.10.25, 2:30 pm.

Exercise 1 (2 points).

Let \mathcal{B} be an \mathcal{L} -structure and $(\mathcal{A}_i)_{i\in I}$ a directed family of substructures of \mathcal{B} with $\mathcal{A}_i \leq \mathcal{B}$ for all i in I. Using Tarski's test, show that $\bigcup_{i\in I} \mathcal{A}_i \leq \mathcal{B}$.

Definition: A consistent theory T is *model complete* if the following condition holds: Whenever \mathcal{A} and \mathcal{B} are models of T such that \mathcal{A} is a substructure of \mathcal{B} , then $A \leq \mathcal{B}$.

Exercise 2 (7 points).

Consider the language \mathcal{L} consisting of a single binary relation symbol E. Let \mathcal{K} be the class of \mathcal{L} structures \mathcal{A} such that the interpretation of the relation E is an equivalence relation with infinitely
many equivalence classes. Furthermore, each $E^{\mathcal{A}}$ -equivalence class has at most 2 elements.

- a) Provide an axiomatization T.
- b) Is T consistent? Is T complete?
- c) Let \mathcal{A} be a countable model of T with exactly one equivalence class of size 1, and let \mathcal{B} be a countable model of T with exactly two equivalence classes of size 1. Show that \mathcal{A} can be embedded into \mathcal{B} .
- d) Is T model complete?

Exercise 3 (8 points).

Consider a model \mathcal{A} of the (consistent) \mathcal{L} -theory T.

- a) Show that T is model complete if T has quantifier elimination.
- b) Show that an \mathcal{L}_A -structure \mathcal{C} is a model of $\operatorname{Diag}^{\operatorname{at}}(\mathcal{A})$ if and only if there is an \mathcal{L} -embedding $f: \mathcal{A} \to \mathcal{C}$.
- c) Assume that T is model complete. Show that the \mathcal{L}_A -theory $T \cup \text{Diag}^{\text{at}}(\mathcal{A})$ is complete.
- d) Suppose now that for every \mathcal{L} -formula $\varphi[x_1,\ldots,x_n]$, there exists a universal formula

$$\psi[x_1,\ldots,x_n]=\forall y_1\ldots\forall y_m\,\theta[x_1,\ldots,x_n,y_1,\ldots,y_m]$$
 with θ quantifier-free

such that $T \models \forall \bar{x}(\varphi[\bar{x}] \leftrightarrow \psi[\bar{x}])$. Show that T is model-complete.

Hint: Sheet 0, exercise 1.

(Please turn the page!)

Exercise 4. (3 points)

Consider the language $\mathcal{L} = \{0, +, -, (\lambda_q)_{q \in \mathbb{Q}}\}$ and let T be the \mathcal{L} -theory of \mathbb{Q} -vector spaces. Show that there is no \mathcal{L} -formula $\varphi[x, y]$ such that in every \mathbb{Q} -vectorspace V (viewed as an \mathcal{L} -structure \mathcal{V}) the following equivalence holds for all v and w in V:

$$\mathcal{V} \models \varphi[v, w] \iff v \text{ and } w \text{ are linearly dependent.}$$

In particular, the collection of pairs of linearly dependent vectors is not definable.

Hint: Sheet 0, exercise 2.

The exercise sheets can be handed in in pairs. Submit them in the mailbox 3.19 in the basement of the Mathematical Institute.